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Unit-III 
 

According to Chomsky hierarchy, grammars are divided of 4 types: 

 

Type 0 known as unrestricted grammar. 

Type 1 known as context sensitive grammar. 

Type 2 known as context free grammar. 

Type 3 Regular Grammar. 

 

Type 0: Unrestricted Grammar: 

In Type 0 

Type-0 grammars include all formal grammars. Type 0 grammar language are recognized by turing 

machine. These languages are also known as the Recursively Enumerable languages. 

 

Grammar Production in the form of 

 

alpha \to \beta where alpha is ( V + T)* V ( V + T)* 

V : Variables 

T : Terminals. 

beta is ( V + T )*. 

In type 0 there must be at least one variable on Left side of production. 

 

For example, 

Sab –>ba 

A –> S. 

Here, Variables are S, A and Terminals a, b. 

 

Type 1: Context Sensitive Grammar) 

Type-1 grammars generate the context-sensitive languages. The language generated by the grammar 

are recognized by the Linear Bound Automata 

In Type 1 

I. First of all Type 1 grammar should be Type 0. 

II. Grammar Production in the form of 

 

alpha \to \beta 

alpha| <= |\beta| 

i.e count of symbol in \alpha is less than or equal to \beta 

 

For Example, 

S –> AB 

AB –>abc 

B –> b 

 

Type 2: Context Free Grammar: 

Type-2 grammars generate the context-free languages. The language generated by the grammar is 

recognized by a Pushdown automata. Type-2 grammars generate the context-free languages. 

 

In Type 2, 

1. First of all it should be Type 1. 

2. Left hand side of production can have only one variable. 

alpha= 1. 
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Their is no restriction on \beta. 

 

For example, 

S –> AB 

A –> a 

B –> b 

 

Type 3: Regular Grammar: 

Type-3 grammars generate regular languages. These languages are exactly all languages that can be 

accepted by a finite state automaton. 

 

Type 3 is most restricted form of grammar. 

Type 3 should be in the given form only : 

 

V –> VT* / T*. 

(or) 

V –> T*V /T* 

 

for example : 

S –> ab. 

TypeChecking: 
• A compiler has to do semantic checks in addition to syntactic checks. 

• Semantic Checks 

• Static –done duringcompilation 

• Dynamic –done duringrun-time 

• Type checking is one of these static checkingoperations. 

• we may not do all type checking at compile-time. 

• Some systems also use dynamic type checking too. 
• A type system is a collection of rules for assigning type expressions to the parts of a program. 

• A type checker implements a type system. 

• A sound type system eliminates run-time type checking for type errors. 

• A programming language is strongly-typed, if every program its compiler accepts will 

execute without type errors. 

• In practice, some of type checking operations is done at run-time (so, most of the 

programming languages are not strongly yped). 

• –Ex: int x[100]; … x[i]  most of the compilers cannot  guarantee that i will be between 0  and 

99 
 

Type Expression: 

• The type of a language construct is denoted by a typeexpression. 
 

•A type expression can be: 

 

–A basic type 

 
•a primitive data type such as integer, real, char, Boolean, … 

 

• type-error to signal a typeerror 
 

• void: notype 
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A type name 

 
• a name can be used to denote a type expression. 

 
• A type constructor applies to other type expressions. 

 

• arrays: If T is a type expression, then array (I,T)is a type expression where I denotes index 

range. Ex: array(0..99,int) 

• products: If T1and T2 are type expressions, then their Cartesian product T1 x T2 is a type 

expression. Ex: int xint 

• pointers: If T is a type expression, then pointer (T) is a type expression. Ex: pointer(int) 
 

• functions: We may treat functions in a programming language as mapping from a domain 

type D to a range type R. So, the type of a function can be denoted by the type expression 

D→R where D are R type expressions. Ex: int→int represents the type of a function 

which takes an int value as parameter, and its return type is alsoint. 

 

Type Checking of Statements: 
S->d=E { if (id.type=E.type 

 

thenS.type=void else S.type=type- 

error 

 

 
S ->if Ethen S1 { if (E.type=boolean thenS.type=S1.type 

else S.type=type-error} 

S->while EdoS1 { if (E.type=boolean thenS.type=S1.type 

else S.type=type-error} 

Type Checking of Functions: 
 

E->E1(E2) { if (E2.type=s and E1.type=s  t)thenE.type=t 

else E.type=type-error} 

Ex: intf(double x, char y) { ... } 

 
f: double x char->int 

 
argumenttypes return type 

 

Structural Equivalence of Type Expressions: 
 

•How do we know that two type expressions are equal? 

•As long as type expressions are built from basic types (no type names), we may use structural 

equivalence between two type expressions 

Structural Equivalence Algorithm (sequin): 

if (s and t are same basic types) then return true 

else if (s=array(s1,s2) and t=array(t1,t2)) 
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then return (sequiv(s1,t1) 

andsequiv(s2,t2)) 

else if(s= s1 x s2and t = t1 x t2) 

then return (sequiv(s1,t1) 

and sequiv(s2,t2)) 
 

else if (s=pointer(s1) and t=pointer(t1)) then return (sequiv(s1,t1)) 

 
else if (s = s1  s2and t = t1   t2) then return (sequiv(s1,t1) and sequiv(s2,t2)) 

else return false 

Names for Type Expressions: 

 
In some programming languages, we give a name to a type expression, and we use that name as a 

type expressionafterwards. 

type link= ↑cell; ? p,q,r,s have same 
 

types ? varp,q :link; 

varr,s : ↑cell 

•How do we treat type names? 

Get equivalent type expression for a type name (then use structural equivalence), or 

Treat a type name as a basic type 

 
 

Overloading of Functions and Operators 

AN OVERLOADED OPERATOR may have different meanings depending upon its context. 

Normally overloading is resolved by the types of the arguments, 

but sometimes this is not possible and an expression can have a set of possible types. 

Example 2 In the previous section we were resolving overloading of binary arithmetic operators by 

looking at the the types of the arguments. Indeed we had two possibles types, say $ \mathbb {Z}$ 

and $ \mathbb {R}$, with a natural coercion due to the inclusion 

$\displaystyle \mbox{${\mathbb Z}$}$ $\displaystyle \subseteq$ $\displaystyle \mbox{${\mathbb 

R}$}$ (2) 

But what could we do if we had the three types $ \mathbb {Z}$, $ \mbox{${\mathbb Z}$}$/p$ 

\mbox{${\mathbb Z}$}$ and $ \mbox{${\mathbb Z}$}$/m$ \mbox{${\mathbb Z}$}$ for two 

different integers m and p? 

There is no natural coercion between $ \mbox{${\mathbb Z}$}$/p$ \mbox{${\mathbb Z}$}$ and $ 

\mbox{${\mathbb Z}$}$/m$ \mbox{${\mathbb Z}$}$. 

So the type of an expression like 1 + 2 and consequently the signature of + may also depend on what 

is done with 1 + 2. 

SET OF POSSIBLE TYPES FOR A SUBEXPRESSION. The first step in resolving the overloading 

of operators and functions occuring in an expression E' is to determine the possible types for E'.  

For simplicity, we restrict here to unary functions. 

We assign to each subexpression E of E' a synthesized attribute E.types which is the set of possible 

types for E. 
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These attributes can be computed by the following translation scheme. 

E' $ \longmapsto$ E 
E $ \longmapsto$ $ \bf id$ 

{ E'.types := 
{ E.types := 

E.types } 
lookup(id.entry) } 

E $ \longmapsto$ E1[E2] { E.types := {t | ($ \exists$ s $ 

\in$ E2.types) | (s $ \rightarrow$ t) $ \in$ E1.types} }   

 

NARROWING THE SET OF POSSIBLE TYPES. The second step in resolving the overloading of 

operators and functions in the expression E' consists of 

determining if a unique type can be assigned to each subexpression E of E' and 

generating the code for evaluating each subexpression E of E'. 

This is done by 

assigning an inherited attribute E.unique to each subexpression E of E' such that 

either E can be assigned a unique type and E.unique is this type, 

or E cannot be assigned a unique type and E.unique is $ \bf type\_error$. 

assigning a synthesized attribute E.code which is the target code for evaluating E and 

executing the following translation scheme (where the attributes E.types have already been 

computed). 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 


